Overview:
Astronomical Spectroscopy

or
How to Start Thinking Creatively about Measuring the Universe

» Basic Spectrograph Optics

* ODbjective Prism Spectrometers - AESoP
 Slit Spectrometers

o Spectrometers for all purposes




In the Beginning: Fraunhofer Lines in the
Solar Spectrum (~1817)

Designation Wavelength Origin

396.8 lonized Calcium (Ca Il)
393.4 lonized Calcium (Ca Il)

A 759.4 nm telluric (terrestrial) oxygen
B 686.7 telluric oxygen

C 656.3 hydrogen (H alpha)

D 589.0 neutral sodium (Na )

E 527.0 neutral iron (Fe I)

F 486.1 hydrogen (H beta)

G 430.3 metal blend

H

K



e Spectroscopy (visual and
photographic) started in the
late 19th century.

o Classifiers originally arranged
them alphabetically, A-O

 A.J. Cannon figured out the
right order from 200,000

objective prism spectra et Seo

s OBAFGKM

 And astronomers realized it Sy
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Dwarf Stars (Luminosity Class V)
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QSO J1208-0257
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High redshift supernova spectra
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Refraction

The speed of light in a dense medium (air, glass...) IS
(usually) slower than in a vacuum.

Refraction index (ratio of speed of light in a vacuum to the
speed in the medium)

— air: n=1.0003
— water: n=1.33
— salt: n=1.53

The speed of light in a material depends on wavelength —
“dispersion” (another use of that word)



Prisms

Prisms disperse light by refraction.

When a beam of white light passes from one medium into
another at an angle, the direction of the beam changes due to
refraction.

Different colors of light are bent at different angles.
Generally, red light is bent less, blue light is bent more.




Objective Prism Spectroscopy

Prism installed at the top of the telescope

Simplest. Light is already parallel, so no extra lenses.

Each point source produces a spectrum

No white light reference spot

Usually low resolution, good for wide-field surveys and meteors
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Diffraction Gratings

e Multi-slit diffraction
* reflection gratings and transmission gratings
e most astronomical gratings are reflection gratings

200

Pave ~2.5 pm
Chirp Ap/p ~5%
Blaze ~2"

Flatness <0.5 um
Roughness <0.5 nm



Note the diffraction grating at
the entrance aperture to
AESOP. This grating produces
a spectrum of every star in the
FOV of the refracting
telescope. The extended baffle
helps limit the FOV to on-axis
objects, such as a
radiometrically calibrated
bright star.



Reflection Gratings

i
¥
. - e
o |

-—

=]

» Light reflecting from grooves A and B will
Interfere constructively if the difference in
path length is an integer number of
wavelengths.

Grating Normal

- Grating Surface ~—

. %1

» The path difference is dsina + dsing (where d is the distance between facets
on the grating), so

dsing + dsing=nA — the grating equation

 n iIs the “spectral order” and quantifies how many wavelengths of path
difference are introduced between successive facets or grooves on the grating)



The Grating Equation

d(sin a+sin p) =nA
* The groove spacing d iIs a feature of the grating

e The angle of incidence, «, Is the same for all wavelengths

« The angle of diffraction, £, must then be a function of wavelength

sin f=nA/d -sIn «

- Grating Surface

\ _




Quiz [1]

sin f=nA/d-sin

We are working with a grating with 1000 grooves per
millimeter.

The incident angle o Is 15°.

At what angle will light of 400 nm be diffracted in 15t order
(n=1)7?

500 nm? 600 nm?

Careful: express wavelength and groove spacing in the same
units

(wu9) o6°6T ‘(WUQOS) -0 ¥T ‘(WUOOY) T8 UBMSUY



Multiple Grating Orders

sin f=nA/d-sin &

 Multiple spectra are produced by a diffraction grating,
corresponding to different orders (n=1,2,3...)

grating normal

Y
\ n=0 |'|
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¢ Quiz [2]
— For a grating of 1000 grooves/mm and  w |
n=2 ( )nm (I.. Jnm (II. )nm* ‘ incident light

15° incident angle, what wavelength of
light will be diffracted to an angle of

14° in second order?
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N grating

e Quiz[3]
— Fill the blanks in the right figure. - N
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Slit Spectrographs

Entrance Aperture: A slit,
usually smaller than that of the
seeing disk

Collimator: converts a diverging
beam to a parallel beam

Dispersing Element: sends light
of different colors into different
directions

Camera: converts a parallel beam
Into a converging beam

Detector: CCD, IR array, etc.

Comparison arc lamp
Light from
telescope oo o) plane
of telescope
i | \ . |
rati St

Computer

Camera
rmirror

eq CCD camera

A Schematic Diagram of a Slit Spectrograph



Why use a slit?

 to Increase resolution
— by narrowing the slit
— also decreases throughput
 to block unwanted light
— from the sky
— other nearby sources

 to set a reference point

Objective spectrum of
the above star field.




Collimator

e The collimator converts the
diverging beam of white light

from the slit to a parallel beam.

e The focal ratio of the
collimator must be matched to
the effective focal ratio of the
telescope.

e The diameter of the collimator

determines the diameter of the
light beam in the spectrograph.
The size of the collimator
affects the size of the “slit
Image” on the detector.



Reflection Grating Efficiency

 Problem: A grating diffracts light into many orders; one
order contains only a fraction of the light

e Fix: Gratings can be designed to concentrate most of the
Incident intensity into a particular order, by a process called
“blazing”. This Is a process where the grooves of a grating
are cut so that the reflecting surfaces are at a certain angle,
the blaze angle. Up to 90% of the incident light can be
diffracted preferentially into the first order.

Dittracted light
concentrated in
the dircction of
normal geometric
retlection

Incoming
light

7

Individual
mirrors



Camera Types

 reflecting camera

— broad wavelength coverage| , 11
— on- of off-axis

e transmission camera
— lenses

— generally on-axis, no central obstruction
— broad wavelength coverage requires multiple elements



Telescope
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Courtesy of S. Ozaki (NAJO)




How to Improve the Resolution?

based on the grating equation
d (sina +sin ) = nA

\ A
W e CCD camers

A Schematic Diagram of a Slit Spectrograph

“o”” 1s the angle from the slit to the grating normal and “B” Is
the angle from the grating normal to the camera. a is usually
fixed. d is the gratng groove spacing.

The “angular dispersion” of a spectrograph is given by 53/0\:

op OB osinpg 1 osimg 1 n
oA osinf 04 osinglofp oA cos S d




resolution
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e The resolution varies as
— the order number (higher order <> more resolution)
— the grating spacing (narrower grooves <> more resolution)

— the camera-collimator angle (as [3 increases, cos [3 gets
smaller and resolution increases)

* The effective resolution of a spectrograph is a
function of
— the grating resolution
— the size of the slit image
— the pixel size



Throughput Matters

e The higher the throughput, the better
e Limitations:
— slit width (get a bigger collimator or better seeing)
— efficiency of
e mirror coatings
 Grating
 Order separating filters
e lens transmission
o detector



Limitations for High Dispersion

* Problem: detector size, shape
— generally square or 1x2 format

— a conventional grating spectrograph produces a very LONG
high dispersion spectrum that does not fit on a CCD

« Solution: the echelle grating
— works in high orders (n ~100)

— a second dispersing element spreads the light in a
perpendicular direction
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Echelle Gratings

To increase spectral resolution,
Increase the order at which a grating
IS used

14

For high orders, must increase o and ndvida
B in the grating equation (to ~50-75°) '

Overlapping

Echelle spectra

grating

The spectral range for each order is ‘ =
small so the orders overlap

Spectra
separated
out T Ty ofdispersion by
N the cross
\

] Direction
disperser

Separate the orders with a second
disperser (cross disperser) acting in a Direction

ofdispersion by

perpendicular direction. e vl



A Real Echelle Spectrum - PN

e |C 418 observed with the
South African Large
Telescope (SALT) High
Resolution Spectrometer

e The three bright emission
lines just below center
are HE3, Hy, and HO from
lower right to upper left.




Multi-object Spectroscopy

Observing one star at a time Is
Inefficient

When many targets (stars, galaxies,
QSOs, ...) are available in a field
(e.g. a star cluster) use multi-object
spectroscopy

Robotically put an optical fiber at
locations of objects to take spectra -
HYDRA.

Feed the optical fibers into a
spectrograph.

Stacked spectra on the detector.

Requires accurate astrometry or the
fiber “misses” the target.
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HYDRA multi-fiber slit spectra

» About 100 stellar spectra are
recorded with the fiber ends
acting as a slit. Note that the
spectra “line up” in
wavelength.




SDSS Multi-Object Spectrometry

SDSS multi-object
spectrometer

— Galaxies
— QSOs
— Selected stars

Fibers are inserted in drilled
plates by hand

E. B
Reod i =

i
sy ’ e




SDSS at Work (BOSS Project)




Integral Field Unit (IFU) Spectroscopy

 An image Is placed on
a fiber bundle (lenslet
array, individual fibers
In an aperture array)

e A data cube (X, y, A)
IS produced




HETDEX — VIRUS Spectrometers

__ -.—-r—n f pil;lllll]lii Hﬂ| =
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 Each IFU has 230 fibers. There are 150 spectrometers! Each
data cube will contain 34,000 spectra.






Fabry-Perot Interferometry

Fathlength difference for adjacent

::::;::::::-':‘"j;*ji/ S e -

. Fabry-Perotintgrferometry / N /
uses parallel mirrors to create |
interference from incoming e
sources. o
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e Transmission maxima at A:
Etalon Fundamentals - 2ndcosa = mA

e Free Spectral Range

Pathlergih difference for adjscens

Partially silvered surface rays = ZAB - C0 = 2d eos o

/ | - e T,(min) when
/ - 2ndcosa=2m+1)1/2

chamge
‘-'-'-/’/JE

e Finesse of an etalon

e ] ——t

_ - « F — FSR nrl/Z
o Effective Transmission R . — 1_r
« T — (1-m)* - w1, = FWHM of maximum
€ 1+7r%2-27r cos(4mndA~1 cos y)
— Where: e Resolution
— r|§ the reflec-t|V|ty of the mlrrors- Rt _Fm
— d is the spacing between the mirrors Avl

— nis refractive index in the space between mirrors



Fabry-Perot Data Cube

 Produce a data cube by
scanning the spacing between
the reflective plates

L o oon




FT Interferometry

fixed mirror
 Fourier Transform: ﬂ: N
5% o cource i / X nr-irr.r.s,'c;mug
° F(u) — f—ool(x)e LTux dx / :: mirros
_ beamsplitter  |t&—i,,>—

» Single detector v

- Fe”get Advantage Speactra !nmrfurugmnls

— E.g. very high resolution IR l

spectroscopy ’
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